论文标题

对Gadolinium增强晚期MRI的心脏分割:多序列心脏MR分割挑战的基准研究

Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark Study from Multi-Sequence Cardiac MR Segmentation Challenge

论文作者

Zhuang, Xiahai, Xu, Jiahang, Luo, Xinzhe, Chen, Chen, Ouyang, Cheng, Rueckert, Daniel, Campello, Victor M., Lekadir, Karim, Vesal, Sulaiman, RaviKumar, Nishant, Liu, Yashu, Luo, Gongning, Chen, Jingkun, Li, Hongwei, Ly, Buntheng, Sermesant, Maxime, Roth, Holger, Zhu, Wentao, Wang, Jiexiang, Ding, Xinghao, Wang, Xinyue, Yang, Sen, Li, Lei

论文摘要

医学图像的心室和心肌的准确计算,分析和建模很重要,尤其是在患有心肌梗塞(MI)患者的诊断和治疗管理中。晚期增强(LGE)心脏磁共振(CMR)提供了可视化MI的重要方案。然而,由于无法区分的边界,异质强度分布以及LGE CMR病理心肌的复杂增强模式,LGE CMR的自动分割仍然具有挑战性。此外,与具有金标准标签的其他序列LGE CMR图像相比,它特别有限,这代表了开发自动分割LGE CMR的新型算法的另一个障碍。本文与MICCAI 2019结合使用了多序列心脏MR(MS-CMR)分割挑战的选择性结果。该挑战提供了配对的MS-CMR图像的数据集,包括辅助CMR序列以及LGE CMR,来自45例患有心脏疾病的患者。它的目的是开发新的算法,并为LGE CMR分割基准测试现有的算法,并客观地对其进行比较。此外,配对的MS-CMR图像可以使算法能够结合其他序列中的互补信息,以分割LGE CMR。选择了九种代表性的作品进行评估和比较,其中三种方法是无监督的方法,其他六种是监督的。结果表明,九种方法的平均性能与观察者间的变化相当。这些方法的成功主要归因于MS-CMR图像中辅助序列的包含,这些辅助序列为培训深神经网络提供了重要的标签信息。

Accurate computing, analysis and modeling of the ventricles and myocardium from medical images are important, especially in the diagnosis and treatment management for patients suffering from myocardial infarction (MI). Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) provides an important protocol to visualize MI. However, automated segmentation of LGE CMR is still challenging, due to the indistinguishable boundaries, heterogeneous intensity distribution and complex enhancement patterns of pathological myocardium from LGE CMR. Furthermore, compared with the other sequences LGE CMR images with gold standard labels are particularly limited, which represents another obstacle for developing novel algorithms for automatic segmentation of LGE CMR. This paper presents the selective results from the Multi-Sequence Cardiac MR (MS-CMR) Segmentation challenge, in conjunction with MICCAI 2019. The challenge offered a data set of paired MS-CMR images, including auxiliary CMR sequences as well as LGE CMR, from 45 patients who underwent cardiomyopathy. It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation and compare them objectively. In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the segmentation of LGE CMR. Nine representative works were selected for evaluation and comparisons, among which three methods are unsupervised methods and the other six are supervised. The results showed that the average performance of the nine methods was comparable to the inter-observer variations. The success of these methods was mainly attributed to the inclusion of the auxiliary sequences from the MS-CMR images, which provide important label information for the training of deep neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源