论文标题
梯度变化限制用于在线凸优化和约束
Gradient-Variation Bound for Online Convex Optimization with Constraints
论文作者
论文摘要
我们研究了在线凸优化,并具有由多个功能约束和相对简单的约束集组成的约束,例如欧几里得球。一般而言,由于在整个预测中执行约束在计算上都具有挑战性,因此我们允许决策违反功能约束,但旨在实现低遗憾和累积违反$ t $时间步骤的约束的行为。一阶方法实现了$ \ Mathcal {O}(\ sqrt {t})$遗憾和$ \ Mathcal {O}(1)$约束违规行为,这是在Slater条件下绑定的最著名的,但不要考虑问题的结构信息。此外,现有的算法和分析仅限于欧几里得空间。在本文中,我们提供了一个\ emph {Instance依赖性},以在线凸优化,并通过新颖的在线原始偶发镜像算法获得的复杂约束。我们与实例有关的遗憾是通过损失函数顺序中的总梯度变化$ v _*(t)$量化的。所提出的算法在\ emph {enstry}规范空间中起作用,同时获得了$ \ Mathcal {o}(\ sqrt {v _*(t)})$遗憾和$ \ Mathcal {o}(O}(1)$约束违规行为,这是最好的$(最不好的)( \ Mathcal {o}(\ sqrt {t}),\ Mathcal {o}(1))$结果,并改进了以前的工作,这些作品应用了sirriver-prox-type算法,以解决此问题,以解决$ \ nathcal {o} {o}(o}(o})(t^{2/3})$和约束。最后,我们的算法在计算上是有效的,因为它仅在每个迭代中执行镜像下降步骤,而不是解决一般的拉格朗日最小化问题。
We study online convex optimization with constraints consisting of multiple functional constraints and a relatively simple constraint set, such as a Euclidean ball. As enforcing the constraints at each time step through projections is computationally challenging in general, we allow decisions to violate the functional constraints but aim to achieve a low regret and cumulative violation of the constraints over a horizon of $T$ time steps. First-order methods achieve an $\mathcal{O}(\sqrt{T})$ regret and an $\mathcal{O}(1)$ constraint violation, which is the best-known bound under the Slater's condition, but do not take into account the structural information of the problem. Furthermore, the existing algorithms and analysis are limited to Euclidean space. In this paper, we provide an \emph{instance-dependent} bound for online convex optimization with complex constraints obtained by a novel online primal-dual mirror-prox algorithm. Our instance-dependent regret is quantified by the total gradient variation $V_*(T)$ in the sequence of loss functions. The proposed algorithm works in \emph{general} normed spaces and simultaneously achieves an $\mathcal{O}(\sqrt{V_*(T)})$ regret and an $\mathcal{O}(1)$ constraint violation, which is never worse than the best-known $( \mathcal{O}(\sqrt{T}), \mathcal{O}(1) )$ result and improves over previous works that applied mirror-prox-type algorithms for this problem achieving $\mathcal{O}(T^{2/3})$ regret and constraint violation. Finally, our algorithm is computationally efficient, as it only performs mirror descent steps in each iteration instead of solving a general Lagrangian minimization problem.