论文标题
大规模弱透镜调查中非高斯统计的宇宙学预测
Cosmological Forecast for non-Gaussian Statistics in large-scale weak Lensing Surveys
论文作者
论文摘要
宇宙剪切数据包含大量宇宙学信息,这些信息封装在弱透镜质量图的非高斯特征中。可以使用非高斯统计数据提取此信息。我们比较$ω_ {\ mathrm {m}}} - σ_8$σ_8基于三个地图的非高斯统计的平面与角度功率谱,即,即将约束功率进行比较。峰/最小计数和Minkowski功能。我们进一步分析了层析成像和系统效应的影响,该影响源自星系内在比对,乘法剪切偏置和光度红移系统学。我们预测了类似3期弱镜头调查的统计数据的性能,并将自己限制在尺度上$ \ geq $ 10 arcmin。我们发现,在我们的设置中,被认为的非高斯统计数据比角功率谱提供了更严格的限制。峰值计数显示出最大的潜力,将$ω_ {\ Mathrm {m}}} - σ_8$平面增加到$ω_ {\ mathrm {\ mathrm {\ mathrm {\ mathrm {\ mathrm {\ mathrm {\ mathrm {\ mathrm {\ mathrm {\ mathrm {m}} - σ_8$平面约为4个。使用所有非高斯统计数据的组合分析,除了所有非高斯统计数据外,功率光谱还增加了5和5倍的$ 225 $ s_8 $ s_8 $ s_8 $ s_8 $ s_8 $ s_8 $ s_8 $ s_8 $ s_8 $ s_8。我们发现,将非高斯统计数据与角功率谱相结合时,断层扫描的重要性会降低。非高斯统计数据的确从断层扫描中获利,最低计数和Minkowski功能在非体征设置中对星系内在的一致性增加了一些鲁棒性。我们进一步发现,角度功率谱和非高斯统计数据的结合使我们能够在分析中应用保守的尺度削减,从而有助于最大程度地减少宇宙学约束能力的影响,从而最大程度地减少了重量和相对论效应的影响。我们制作用于公开进行此分析的代码。
Cosmic shear data contains a large amount of cosmological information encapsulated in the non-Gaussian features of the weak lensing mass maps. This information can be extracted using non-Gaussian statistics. We compare the constraining power in the $Ω_{\mathrm{m}} - σ_8$ plane of three map-based non-Gaussian statistics with the angular power spectrum, namely; peak/minimum counts and Minkowski functionals. We further analyze the impact of tomography and systematic effects originating from galaxy intrinsic alignments, multiplicative shear bias and photometric redshift systematics. We forecast the performance of the statistics for a stage-3-like weak lensing survey and restrict ourselves to scales $\geq$ 10 arcmin. We find, that in our setup, the considered non-Gaussian statistics provide tighter constraints than the angular power spectrum. The peak counts show the greatest potential, increasing the Figure-of-Merit (FoM) in the $Ω_{\mathrm{m}} - σ_8$ plane by a factor of about 4. A combined analysis using all non-Gaussian statistics in addition to the power spectrum increases the FoM by a factor of 5 and reduces the error on $S_8$ by $\approx$ 25\%. We find that the importance of tomography is diminished when combining non-Gaussian statistics with the angular power spectrum. The non-Gaussian statistics indeed profit less from tomography and the minimum counts and Minkowski functionals add some robustness against galaxy intrinsic alignment in a non-tomographic setting. We further find that a combination of the angular power spectrum and the non-Gaussian statistics allows us to apply conservative scale cuts in the analysis, thus helping to minimize the impact of baryonic and relativistic effects, while conserving the cosmological constraining power. We make the code that was used to conduct this analysis publicly available.