论文标题

用于晶体表面进化的近端梯度算法

A Proximal-Gradient Algorithm for Crystal Surface Evolution

论文作者

Craig, Katy, Liu, Jian-Guo, Lu, Jianfeng, Marzuola, Jeremy L., Wang, Li

论文摘要

作为晶体表面演化的最新数值方法的对立,这与微观动力学非常吻合,但具有明显的刚度,可以防止对良好的空间网格进行模拟,我们开发了一种基于宏观偏差方程的新数值方法,将其正式结构作为总体变化的梯度流动,以对总体变化的梯度流动,并获得了体重$ h^$ h^$ h^$ h^$ h.这种梯度流结构与最近感兴趣的几个度量空间梯度流有关,包括2-wasserstein流及其对非线性迁移率的概括。我们发展了梯度流的新型半平移时间离散化,这是受经典最小化运动方案(在2-Wasserstein案例中称为JKO方案)的启发。然后,我们使用原始的双重杂交梯度(PDHG)方法来计算半平整方案的每个元素。在一个维度中,我们证明了PDHG方法与半显得方案的收敛性,在对迁移率及其倒数的一般整合性假设下。最后,通过采用PDHG方法的有限差近似值,我们达到了完全离散的数值算法,其迭代以独立于空间离散化的速率收敛:尤其是,当我们改进空间网格时,收敛性能不会恶化。我们关闭了几个数字示例,这些示例说明了我们方法的特性,包括局部最大值的小平面形成,固定在局部最小值,并随着空间和时间离散化的结合而收敛。

As a counterpoint to recent numerical methods for crystal surface evolution, which agree well with microscopic dynamics but suffer from significant stiffness that prevents simulation on fine spatial grids, we develop a new numerical method based on the macroscopic partial differential equation, leveraging its formal structure as the gradient flow of the total variation energy, with respect to a weighted $H^{-1}$ norm. This gradient flow structure relates to several metric space gradient flows of recent interest, including 2-Wasserstein flows and their generalizations to nonlinear mobilities. We develop a novel semi-implicit time discretization of the gradient flow, inspired by the classical minimizing movements scheme (known as the JKO scheme in the 2-Wasserstein case). We then use a primal dual hybrid gradient (PDHG) method to compute each element of the semi-implicit scheme. In one dimension, we prove convergence of the PDHG method to the semi-implicit scheme, under general integrability assumptions on the mobility and its reciprocal. Finally, by taking finite difference approximations of our PDHG method, we arrive at a fully discrete numerical algorithm, with iterations that converge at a rate independent of the spatial discretization: in particular, the convergence properties do not deteriorate as we refine our spatial grid. We close with several numerical examples illustrating the properties of our method, including facet formation at local maxima, pinning at local minima, and convergence as the spatial and temporal discretizations are refined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源