论文标题

Wasserstein密度时间序列自回旋模型

Wasserstein Autoregressive Models for Density Time Series

论文作者

Zhang, Chao, Kokoszka, Piotr, Petersen, Alexander

论文摘要

由横截面或盘中回报的时间指数分布组成的数据已在金融中进行了广泛的研究,并提供了一个示例,其中数据原子由串行依赖的概率分布组成。在此类数据中,我们通过利用由Wasserstein Metric诱导的分布空间上的切线空间结构来提出一个密度时间序列的自回归模型。这些密度本身并不认为具有任何特定的参数形式,从而可以灵活地预测未来的未观察到的密度。订单中的主要估计目标-P $ wasserstein自回旋模型是Wasserstein自相关和矢量值自回归参数。我们提出合适的估计器并建立其渐近正态性,并在一项模拟研究中进行了验证。新的订单-P $ WASSERSTEIN自回旋模型导致预测算法,其中包括数据驱动的订单选择过程。将其性能与现有的预测程序通过应用于四个财务回报数据集进行了比较,其中使用各种指标来量化预测准确性。对于大多数指标,所提出的模型在两个数据集中的现有方法都优于现有方法,而其他两个数据集中最佳的经验性能是根据密度的功能转换来实现的。

Data consisting of time-indexed distributions of cross-sectional or intraday returns have been extensively studied in finance, and provide one example in which the data atoms consist of serially dependent probability distributions. Motivated by such data, we propose an autoregressive model for density time series by exploiting the tangent space structure on the space of distributions that is induced by the Wasserstein metric. The densities themselves are not assumed to have any specific parametric form, leading to flexible forecasting of future unobserved densities. The main estimation targets in the order-$p$ Wasserstein autoregressive model are Wasserstein autocorrelations and the vector-valued autoregressive parameter. We propose suitable estimators and establish their asymptotic normality, which is verified in a simulation study. The new order-$p$ Wasserstein autoregressive model leads to a prediction algorithm, which includes a data driven order selection procedure. Its performance is compared to existing prediction procedures via application to four financial return data sets, where a variety of metrics are used to quantify forecasting accuracy. For most metrics, the proposed model outperforms existing methods in two of the data sets, while the best empirical performance in the other two data sets is attained by existing methods based on functional transformations of the densities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源