论文标题
风险意识自治系统的准确参数估计
Accurate Parameter Estimation for Risk-aware Autonomous Systems
论文作者
论文摘要
使用通常动态的模型进行了安全关键自治系统的分析和合成。这些动态系统的两个主要特征是参数和未建模的动力学。本文介绍了使用基于光谱线的方法来估计自主系统动态模型的参数。现有文献使用基于高斯噪声的外源信号将动态系统的所有未建模组件视为高斯噪声和提议的参数估计。相比之下,我们允许未建模的部分具有确定性的未建模动力学,除了高出高斯噪声外,几乎总是存在于物理系统中。此外,我们提出了外源信号的确定性结构,以进行参数估计。我们介绍了一个新的工具套件,该工具包采用光谱线理论,保留随机设置,并导致参数估计误差的非反应界限。与现有的随机方法不同,这些边界可以通过对外源信号的频谱的最佳选择来调整,从而导致准确的参数估计。我们还表明,此估计对于未建模的动态是强大的,该属性无法通过现有方法保证。最后,我们表明,在没有未模拟动态的理想条件下,提出的方法可以确保$ \ tilde {o}(\ sqrt {t})$遗憾,与现有文献相匹配。提供实验以支持所有理论推导,这表明基于光谱线的方法在存在未模块化的动力学时优于基于高斯噪声的方法,这是参数估计误差和使用参数估计的遗憾,并在反馈中使用线性二次调节器获得。
Analysis and synthesis of safety-critical autonomous systems are carried out using models which are often dynamic. Two central features of these dynamic systems are parameters and unmodeled dynamics. This paper addresses the use of a spectral lines-based approach for estimating parameters of the dynamic model of an autonomous system. Existing literature has treated all unmodeled components of the dynamic system as sub-Gaussian noise and proposed parameter estimation using Gaussian noise-based exogenous signals. In contrast, we allow the unmodeled part to have deterministic unmodeled dynamics, which are almost always present in physical systems, in addition to sub-Gaussian noise. In addition, we propose a deterministic construction of the exogenous signal in order to carry out parameter estimation. We introduce a new tool kit which employs the theory of spectral lines, retains the stochastic setting, and leads to non-asymptotic bounds on the parameter estimation error. Unlike the existing stochastic approach, these bounds are tunable through an optimal choice of the spectrum of the exogenous signal leading to accurate parameter estimation. We also show that this estimation is robust to unmodeled dynamics, a property that is not assured by the existing approach. Finally, we show that under ideal conditions with no unmodeled dynamics, the proposed approach can ensure a $\tilde{O}(\sqrt{T})$ regret, matching existing literature. Experiments are provided to support all theoretical derivations, which show that the spectral lines-based approach outperforms the Gaussian noise-based method when unmodeled dynamics are present, in terms of both parameter estimation error and Regret obtained using the parameter estimates with a Linear Quadratic Regulator in feedback.