论文标题

在复杂的3D地形中进行运动型转变的能量景观方法

An energy landscape approach to locomotor transitions in complex 3D terrain

论文作者

Othayoth, Ratan, Thoms, George, Li, Chen

论文摘要

自然界的有效运动是通过跨多种模式过渡(例如,步行,跑步,攀爬)而发生的。尽管如此,对陆地运动的机械理解却更具机械性理解一直在于如何在单个模式下生成和稳定近地状态。我们仍然对运动转变从与复杂地形的物理互动中出现。因此,机器人在很大程度上依靠几何图来避免障碍,而不是穿越它们。最近的研究表明,复杂3-D地形的运动转变通过多种途径概率地发生。在这里,我们表明一种能源景观方法阐明了基本的物理原理。我们发现,通过复杂的3-D地形自行旋转的动物和机器人的运动过渡对应于势能景观上的屏障横断过渡。运动模式被势能屏障隔开的景观盆地所吸引。振荡自我的动能波动有助于系统随机从一个盆地逃脱并到达另一个盆地以进行过渡。逃逸更有可能朝着较低的障碍方向朝着较低的方向发展。这些原理与近平衡的微观系统非常相似。类似于多条纹蛋白质折叠过渡的自由能景观,我们的能量景观方法是第一原理的开始,这是在复杂地形中多道运动运动转变的统计物理理论的开始。这不仅将有助于了解动物行为的组织如何从其神经和机械系统以及物理环境之间的多尺度相互作用中出现,而且还指导机器人的设计,控制和计划,对大型的,棘手的机动体 - 侵蚀参数空间,以生成强大的机动体转变。

Effective locomotion in nature happens by transitioning across multiple modes (e.g., walk, run, climb). Despite this, far more mechanistic understanding of terrestrial locomotion has been on how to generate and stabilize around near-steady-state movement in a single mode. We still know little about how locomotor transitions emerge from physical interaction with complex terrain. Consequently, robots largely rely on geometric maps to avoid obstacles, not traverse them. Recent studies revealed that locomotor transitions in complex 3-D terrain occur probabilistically via multiple pathways. Here, we show that an energy landscape approach elucidates the underlying physical principles. We discovered that locomotor transitions of animals and robots self-propelled through complex 3-D terrain correspond to barrier-crossing transitions on a potential energy landscape. Locomotor modes are attracted to landscape basins separated by potential energy barriers. Kinetic energy fluctuation from oscillatory self-propulsion helps the system stochastically escape from one basin and reach another to make transitions. Escape is more likely towards lower barrier direction. These principles are surprisingly similar to those of near-equilibrium, microscopic systems. Analogous to free energy landscapes for multi-pathway protein folding transitions, our energy landscape approach from first principles is the beginning of a statistical physics theory of multi-pathway locomotor transitions in complex terrain. This will not only help understand how the organization of animal behavior emerges from multi-scale interactions between their neural and mechanical systems and the physical environment, but also guide robot design, control, and planning over the large, intractable locomotor-terrain parameter space to generate robust locomotor transitions through the real world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源