论文标题
lusztig滑轮的微局部表征和$ g $ -Loops Quivers
Microlocal characterization of Lusztig sheaves for affine quivers and $g$-loops quivers
论文作者
论文摘要
我们证明,对于扩展的Dynkin颤动,Lusztig类别中的简单变形滑轮的特征是它们的奇异支持的敏捷性。这证明了在仿射颤动的情况下的猜想。对于循环砂纸,我们证明了较大的尼洛替代品种和较大类别的不良皮带的结果。我们为带环的Quivers制定了猜想,为此,由于Bozec,Schiffmann和Vasserot,我们必须使用适当的Nilpotent品种概念。我们证明了$ g $ - 循环的猜想($ g \ geq 2 $)。
We prove that for extended Dynkin quivers, simple perverse sheaves in Lusztig category are characterized by the nilpotency of their singular support. This proves a conjecture of Lusztig in the case of affine quivers. For cyclic quivers, we prove a similar result for a larger nilpotent variety and a larger class of perverse sheaves. We formulate conjectures for similar results for quivers with loops, for which we have to use the appropriate notion of nilpotent variety, due to Bozec, Schiffmann and Vasserot. We prove our conjecture for $g$-loops quivers ($g\geq 2$).