论文标题
具有高斯度量的可变lebesgue空间上一般替代高斯奇异积分的界限
The Boundedness of General Alternative Gaussian Singular Integrals on variable Lebesgue spaces with Gaussian measure
论文作者
论文摘要
在上一篇论文中,我们介绍了一类新的高斯单数积分,我们称之为一般替代性高斯单数积分,并研究了它们在$ l^p(γ_d)$,$ 1 <p <\ infty中的界限。$在本文中,我们在lebesgue lebesgue cd的$ cde cd cd cd cd cde cd cde cd($ cd)中的界限(我们在本文中都有$ cd的限制($ cd)($ cd)。 Dalmasso和R. Scotto。
In a previous paper, we introduced a new class of Gaussian singular integrals, that we called the general alternative Gaussian singular integrals and study the boundedness of them on $L^p(γ_d)$, $ 1 < p < \infty.$ In this paper, we study the boundedness of those operators on Gaussian variable Lebesgue spaces under a certain additional condition of regularity on $p(\cdot)$ following a paper by E. Dalmasso and R. Scotto.