论文标题

具有高斯度量的可变lebesgue空间上一般替代高斯奇异积分的界限

The Boundedness of General Alternative Gaussian Singular Integrals on variable Lebesgue spaces with Gaussian measure

论文作者

Navas, Eduard, Pineda, Ebner, Urbina, Wilfredo

论文摘要

在上一篇论文中,我们介绍了一类新的高斯单数积分,我们称之为一般替代性高斯单数积分,并研究了它们在$ l^p(γ_d)$,$ 1 <p <\ infty中的界限。$在本文中,我们在lebesgue lebesgue cd的$ cde cd cd cd cd cde cd cde cd($ cd)中的界限(我们在本文中都有$ cd的限制($ cd)($ cd)。 Dalmasso和R. Scotto。

In a previous paper, we introduced a new class of Gaussian singular integrals, that we called the general alternative Gaussian singular integrals and study the boundedness of them on $L^p(γ_d)$, $ 1 < p < \infty.$ In this paper, we study the boundedness of those operators on Gaussian variable Lebesgue spaces under a certain additional condition of regularity on $p(\cdot)$ following a paper by E. Dalmasso and R. Scotto.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源