论文标题

使用卷积神经网络对CT扫描的COVID-19自动检测

Automated Detection of COVID-19 from CT Scans Using Convolutional Neural Networks

论文作者

Lokwani, Rohit, Gaikwad, Ashrika, Kulkarni, Viraj, Pant, Aniruddha, Kharat, Amit

论文摘要

Covid-19是一种传染病,会导致与SARS-COV引起的呼吸道问题(2003年)。当前,拭子样品正在用于诊断。最常见的测试方法是RT-PCR方法,该方法具有高特异性但敏感性可变。基于AI的检测有能力克服此缺点。在本文中,我们提出了一种前瞻性方法,其中我们使用胸部CT扫描来诊断患者的肺炎。我们使用一组开源图像,可作为单个CT切片,以及来自私人印度医院的完整CT扫描来培训我们的模型。我们使用U-NET体系结构构建一个2D分割模型,该模型通过标记感染区域来提供输出。我们的模型的灵敏度为96.428%(95%CI:88%-100%),特异性为88.39%(95%CI:82%-94%)。此外,我们得出了将切片级预测转换为扫描级别的逻辑,这有助于我们减少误报。

COVID-19 is an infectious disease that causes respiratory problems similar to those caused by SARS-CoV (2003). Currently, swab samples are being used for its diagnosis. The most common testing method used is the RT-PCR method, which has high specificity but variable sensitivity. AI-based detection has the capability to overcome this drawback. In this paper, we propose a prospective method wherein we use chest CT scans to diagnose the patients for COVID-19 pneumonia. We use a set of open-source images, available as individual CT slices, and full CT scans from a private Indian Hospital to train our model. We build a 2D segmentation model using the U-Net architecture, which gives the output by marking out the region of infection. Our model achieves a sensitivity of 96.428% (95% CI: 88%-100%) and a specificity of 88.39% (95% CI: 82%-94%). Additionally, we derive a logic for converting our slice-level predictions to scan-level, which helps us reduce the false positives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源