论文标题

注意MOOC中的知识概念推荐的注意力图卷积网络在异质视图中

Attentional Graph Convolutional Networks for Knowledge Concept Recommendation in MOOCs in a Heterogeneous View

论文作者

Wang, Shen, Gong, Jibing, Wang, Jinlong, Feng, Wenzheng, Peng, Hao, Tang, Jie, Yu, Philip S.

论文摘要

大规模开放的在线课程已成为一种教育的一种途径,该课程为学生提供了一个大规模和开放的学习机会,可以使学生掌握知识。为了吸引学生的兴趣,MOOC提供商采用推荐系统向学生推荐课程。但是,由于课程通常由许多视频讲座组成,每个讲座都涵盖了一些特定的知识概念,直接建议课程忽略学生与某些特定知识概念的兴趣。为了填补这一空白,在本文中,我们研究了知识概念建议的问题。我们提出了一种基于端到的图形神经网络的方法,称为Alternegenegencentional Hhsherhsherhsherhsherhexegrenege Grouns卷积深度知识推荐(ACKREC),以了解MOOC中的知识概念建议。像其他建议问题一样,它遇到了稀疏问题。为了解决此问题,我们利用内容信息和上下文信息通过图形卷积网络来了解实体的表示。除了学生和知识概念外,我们还考虑了其​​他类型的实体(例如课程,视频,教师)并构建一个异质的信息网络,以捕获不同类型的实体之间相应的富有成果的语义关系,并将其纳入表示过程。具体来说,我们在HIN上使用元路径来指导学生偏好的传播。在这些元路径的帮助下,可以捕获学生对候选知识概念的偏好分布。此外,我们提出了一种注意机制,以适应来自不同元数据的上下文信息,以捕获不同学生的不同利益。有希望的实验结果表明,提议的acckrecis能够有效地向MOOC追求在线学习的学生有效地推荐知识概念。

Massive open online courses are becoming a modish way for education, which provides a large-scale and open-access learning opportunity for students to grasp the knowledge. To attract students' interest, the recommendation system is applied by MOOCs providers to recommend courses to students. However, as a course usually consists of a number of video lectures, with each one covering some specific knowledge concepts, directly recommending courses overlook students'interest to some specific knowledge concepts. To fill this gap, in this paper, we study the problem of knowledge concept recommendation. We propose an end-to-end graph neural network-based approach calledAttentionalHeterogeneous Graph Convolutional Deep Knowledge Recommender(ACKRec) for knowledge concept recommendation in MOOCs. Like other recommendation problems, it suffers from sparsity issues. To address this issue, we leverage both content information and context information to learn the representation of entities via graph convolution network. In addition to students and knowledge concepts, we consider other types of entities (e.g., courses, videos, teachers) and construct a heterogeneous information network to capture the corresponding fruitful semantic relationships among different types of entities and incorporate them into the representation learning process. Specifically, we use meta-path on the HIN to guide the propagation of students' preferences. With the help of these meta-paths, the students' preference distribution with respect to a candidate knowledge concept can be captured. Furthermore, we propose an attention mechanism to adaptively fuse the context information from different meta-paths, in order to capture the different interests of different students. The promising experiment results show that the proposedACKRecis able to effectively recommend knowledge concepts to students pursuing online learning in MOOCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源