论文标题

绿色的功能分解,用于反向散射方程的新重写

Greens function decomposition for a new rewriting of inverse scattering equations

论文作者

Bevacqua, Martina T., Isernia, Tommaso

论文摘要

在本文中,通过方便地重写通常的Lippmann Schwinger积分散射方程来引入2D微波成像的新反转模型。这种模型是通过分解绿色的功能和相应的内部辐射操作员以两种不同的贡献来得出的。实际上,其中一个可以轻松地从收集的分散数据中计算出来。在无损背景的情况下,结果模型比传统模型更方便,因为它在嵌入未知介电特性的参数方面表现出较低的非线性程度。这个有趣的属性表明它在逆散射问题解决方案中的剥削。在两种线性近似和完整的非线性框架的情况下,通过将提出的模型与通常基于Lippman-Schwinger方程的通常模型进行比较,可以测试可实现的性能。考虑了数值和实验数据。

In this paper, a new inversion model for 2D microwave imaging is introduced by means of a convenient rewriting of the usual Lippmann Schwinger integral scattering equation. Such model is derived by decomposing the Greens function and the corresponding internal radiation operator in two different contributions. In fact, one of them can be easily computed from the collected scattered data. In case of lossless backgrounds, the resulting model turns out to be more convenient than the traditional one, as it exhibits a lower degree of nonlinearity with respect to parameters embedding the unknown dielectric characteristics. This interesting property suggests its exploitation in the solution of the inverse scattering problem. The achievable performances are tested by comparing the proposed model with the usual one based on the Lippman-Schwinger equation in both cases of linearly approximated and full non-linear frameworks. Both numerical and experimental data are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源