论文标题
振动对称性损坏的电路在生物网络中执行核心逻辑计算
Circuits with broken fibration symmetries perform core logic computations in biological networks
论文作者
论文摘要
我们表明,基因调节网络中的逻辑计算电路是由网络结构中的纤维对称性破坏引起的。从这个想法中,我们实施了一个建设性的过程,该过程揭示了遗传回路的层次结构,跨物种无处不在,这令人惊讶地类似于固态电子设备的象征性电路:从晶体管开始,从晶体管开始到环振荡器,到电流振荡器,当前的摩尔电路,以切换开关和flip-flops。这些规范变体提供了同步和时钟(在其对称状态)和内存存储(以破碎的对称状态)的基本操作。这些结论引入了一种理论上有原则的策略,以搜索生物网络中的计算构建块,并提出了设计合成生物电路的系统途径。
We show that logic computational circuits in gene regulatory networks arise from a fibration symmetry breaking in the network structure. From this idea we implement a constructive procedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surprising analogues to the emblematic circuits of solid-state electronics: starting from the transistor and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops. These canonical variants serve fundamental operations of synchronization and clocks (in their symmetric states) and memory storage (in their broken symmetry states). These conclusions introduce a theoretically principled strategy to search for computational building blocks in biological networks, and present a systematic route to design synthetic biological circuits.