论文标题

在线竞争影响最大化

Online Competitive Influence Maximization

论文作者

Zuo, Jinhang, Liu, Xutong, Joe-Wong, Carlee, Lui, John C. S., Chen, Wei

论文摘要

在线影响最大化吸引了很多关注,以此,在学习未知网络参数的价值的同时,通过社交网络最大程度地传播了影响力。大多数以前的作品都集中在单项扩散上。在本文中,我们引入了一个新的在线竞争影响最大化(OCIM)问题,其中两个竞争性项目(例如,产品,新闻报道)在同一网络中传播,边缘上的概率尚不清楚。我们为OCIM采用组合多军匪(CMAB)框架,但是与非竞争力的环境不同,重要的单调性能(当影响边缘上的影响概率增加时,影响差异会增加)不再具有繁殖的竞争性质,这给问题带来了重大的新挑战。我们提供了一个非平凡的证据,表明CMAB的触发概率调制(TPM)仍然存在于OCIM中,这对我们提出的算法OCIM-TS和OCIM-OFU具有重要的作用,可以分别实现sublinear bayesian和频繁的遗憾。我们还设计了一种OCIM-ETC算法,该算法需要更少的反馈和更容易的离线计算,而牺牲了较差的常见主义者遗憾。实验评估证明了我们的算法的有效性。

Online influence maximization has attracted much attention as a way to maximize influence spread through a social network while learning the values of unknown network parameters. Most previous works focus on single-item diffusion. In this paper, we introduce a new Online Competitive Influence Maximization (OCIM) problem, where two competing items (e.g., products, news stories) propagate in the same network and influence probabilities on edges are unknown. We adopt a combinatorial multi-armed bandit (CMAB) framework for OCIM, but unlike the non-competitive setting, the important monotonicity property (influence spread increases when influence probabilities on edges increase) no longer holds due to the competitive nature of propagation, which brings a significant new challenge to the problem. We provide a nontrivial proof showing that the Triggering Probability Modulated (TPM) condition for CMAB still holds in OCIM, which is instrumental for our proposed algorithms OCIM-TS and OCIM-OFU to achieve sublinear Bayesian and frequentist regret, respectively. We also design an OCIM-ETC algorithm that requires less feedback and easier offline computation, at the expense of a worse frequentist regret bound. Experimental evaluations demonstrate the effectiveness of our algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源