论文标题

二聚体模型和calabi-yau几何形状中的量子周期和光谱

Quantum Periods and Spectra in Dimer Models and Calabi-Yau Geometries

论文作者

Huang, Min-xin, Sugimoto, Yuji, Wang, Xin

论文摘要

我们研究了从二聚体图衍生的一类量子整合系统,也通过局部曲曲曲曲比(Calabi-Yau)的几何形状具有较高的镜面曲线描述,从而推广了一些以前的作品。我们通过标准扰动方法和以量子周期为相体积来计算量子系统的光谱。通过这种方式,我们获得了Calabi-yau几何形状的经典和量子周期的一些确切的分析结果。我们还确定了量子周期的差分运算符,并计算Nekrasov-Shatashvili(NS)极限中的拓扑弦乐自由能。结果与其他方法(例如拓扑顶点)的计算一致。

We study a class of quantum integrable systems derived from dimer graphs and also described by local toric Calabi-Yau geometries with higher genus mirror curves, generalizing some previous works on genus one mirror curves. We compute the spectra of the quantum systems both by standard perturbation method and by Bohr-Sommerfeld method with quantum periods as the phase volumes. In this way, we obtain some exact analytic results for the classical and quantum periods of the Calabi-Yau geometries. We also determine the differential operators of the quantum periods and compute the topological string free energy in Nekrasov-Shatashvili (NS) limit. The results agree with calculations from other methods such as the topological vertex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源