论文标题

换向器矩阵定义的代数集

Algebraic sets defined by the commutator matrix

论文作者

Kadyrsizova, Zhibek, Yerlanov, Madi

论文摘要

在本文中,我们研究了代数对矩阵的成对组,这些矩阵的对角线的对角线消失了,或者其抗双向对角线的对角线。我们找到了这两组的坐标环及其交点的参数系统,并表明它们是完整的交叉点。此外,我们证明,这些代数集在正面的主要特征上是$ f $ pure,并且代数矩阵的代数矩阵与零对角换向器的矩阵为$ f $ rogular。

In this paper we study algebraic sets of pairs of matrices defined by the vanishing of either the diagonal of their commutator matrix or its anti-diagonal. We find a system of parameters for the coordinate rings of these two sets and their intersection and show that they are complete intersections. Moreover, we prove that these algebraic sets are $F$-pure over a field of positive prime characteristic and the algebraic set of pairs of matrices with the zero diagonal commutator is $F$-regular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源