论文标题
有限体积的熵刚度严格凸出射击歧管
Entropy rigidity for finite volume strictly convex projective manifolds
论文作者
论文摘要
我们证明了有限体积的熵刚度严格凸出尺寸$ \ geq 3 $,将Arxiv的工作概括为有限卷设置。刚性定理使用Besson,Courois和Gallot的熵刚性定理的技术。它暗示了任何有限体积的均匀凸出的凸出柱状歧管的均匀下限,$ \ geq 3 $。
We prove entropy rigidity for finite volume strictly convex projective manifolds in dimensions $\geq 3$, generalizing the work of arXiv:1708.03983 to the finite volume setting. The rigidity theorem uses the techniques of Besson, Courtois, and Gallot's entropy rigidity theorem. It implies uniform lower bounds on the volume of any finite volume strictly convex projective manifold in dimensions $\geq 3$.