论文标题

排名两个普遍变形的Zeta形态

Zeta morphisms for rank two universal deformations

论文作者

Nakamura, Kentaro

论文摘要

在本文中,我们构建了ZETA形态,用于奇数绝对不可还原的二维Mod P Galois表示,以满足一些轻度的假设,并证明我们的Zeta Morphisms插入了与Hecke Eigen Cusp Newforms相关的Kato Kato的Zeta形态。加托广泛的伊瓦沙(Iwasawa)的主要猜想预测了这种形态的存在。基于加藤的原始结构,我们使用p-Adic(本地和全局)Langlands langlands对应的Zeta形态构建了我们的Zeta形态。作为我们的Zeta形态和不满的文章{KLP19}的应用,我们证明了一个定理,该定理大致指出,在某些MU = 0假设下,Iwasawa Main Subinusture没有P-ADIC L功能而没有P-ADIC L-function f for F Hold,如果此猜想对一个G持续一个G,则与F相称。

In this article, we construct zeta morphisms for the universal deformations of odd absolutely irreducible two dimensional mod p Galois representations satisfying some mild assumptions, and prove that our zeta morphisms interpolate Kato's zeta morphisms for Galois representations associated to Hecke eigen cusp newforms. The existence of such morphisms was predicted by Kato's generalized Iwasawa main conjecture. Based on Kato's original construction, we construct our zeta morphisms using many deep results in the theory of p-adic (local and global) Langlands correspondence for GL_{2/Q}. As an application of our zeta morphisms and the resent article {KLP19}, we prove a theorem which roughly states that, under some mu=0 assumption, Iwasawa main conjecture without p-adic L-function for f holds if this conjecture holds for one g which is congruent to f.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源