论文标题

非参数相拟合场传播

Nonparaxial phasor-field propagation

论文作者

Dove, Justin, Shapiro, Jeffrey H.

论文摘要

俗称“围绕角落”的非透视图(NLOS)成像的兴趣日益增长,导致了相用场的发展($ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \米卡{p} $ - 字段)成像,其中,幅度越来越多地散布了一个空间,使幅度越来越多的空间被视为一种范围,从而使人们受到了越来越多的范围。最近,我们建立了一种用于$ \ Mathcal {p} $的近距离理论 - 在传播几何形状中进行的现场成像,这是三弹性NLOS成像的代理[J. Dove和J. H. Shapiro,选择。 express {\ bf 27}(13)18016---18037(2019)]。我们的理论依赖于菲涅尔衍射的积分,它引入了两频空间Wigner分布(TFSWD),以有效地说明隐藏空间中可能存在的镜面和闭合,并且不能以$ \ Mathcal {p} $ - 单独使用$ \ MATHCAL {P} $ - 单独使用。但是,由于在许多(如果不是大多数)NLOS方案中可能会违反近去的假设,因此在本文中,我们通过使用Rayleigh-Sommerfeld衍射的整体来克服了$ \ Mathcal {P} $字段的非帕型传播公式来克服该限制。我们还提出了一个TFSWD的雷利 - 塞默菲尔德传播公式,并提供了在特定部分辅助条件下有效的推导。最后,我们报告了一对微分方程,该方程表征了自由空间TFSWD传播而无需限制。

Growing interest in non-line-of-sight (NLoS) imaging, colloquially referred to as "seeing around corners", has led to the development of phasor-field ($\mathcal{P}$-field) imaging, wherein the field envelope of amplitude-modulated spatially-incoherent light is manipulated like an optical wave to directly probe a space that is otherwise shielded from view by diffuse scattering. Recently, we have established a paraxial theory for $\mathcal{P}$-field imaging in a transmissive geometry that is a proxy for three-bounce NLoS imaging [J. Dove and J. H. Shapiro, Opt. Express {\bf 27}(13) 18016--18037 (2019)]. Our theory, which relies on the Fresnel diffraction integral, introduces the two-frequency spatial Wigner distribution (TFSWD) to efficiently account for specularities and occlusions that may be present in the hidden space and cannot be characterized with $\mathcal{P}$-field formalism alone. However, because the paraxial assumption is likely violated in many, if not most, NLoS scenarios, in the present paper we overcome that limitation by deriving a nonparaxial propagation formula for the $\mathcal{P}$ field using the Rayleigh--Sommerfeld diffraction integral. We also propose a Rayleigh--Sommerfeld propagation formula for the TFSWD and provide a derivation that is valid under specific partial-coherence conditions. Finally, we report a pair of differential equations that characterize free-space TFSWD propagation without restriction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源