论文标题

心脏重新同步治疗响应预测的可解释的深层模型

Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction

论文作者

Puyol-Antón, Esther, Chen, Chen, Clough, James R., Ruijsink, Bram, Sidhu, Baldeep S., Gould, Justin, Porter, Bradley, Elliott, Mark, Mehta, Vishal, Rueckert, Daniel, Rinaldi, Christopher A., King, Andrew P.

论文摘要

深度学习的进步(DL)在某些医学图像分类任务中导致了令人印象深刻的准确性,但通常深层模型缺乏可解释性。这些模型解释其决策的能力对于培养临床信任和促进临床翻译很重要。此外,对于许多医学中的许多问题,都有大量现有的临床知识可以借鉴,这可能对产生解释很有用,但是并不明显如何将这些知识编码到DL模型中 - 大多数模型都是从划痕中学到的,或者是从划痕或使用来自其他领域的转移学习。在本文中,我们解决了这两个问题。我们提出了一个基于变异自动编码器(VAE)的基于图像的分类的新型DL框架。该框架允许从自动编码器的潜在空间以及跨越决策边界的影响的可视化(在图像域中)预测感兴趣的输出,从而增强了分类器的可解释性。我们的关键贡献是,VAE根据现有临床知识得出的“解释”来解散潜在空间。该框架可以预测这些输出的产出和解释,还可以发现发现与现有知识分开(或分离)的新生物标志物的可能性。我们证明了我们关于预测心脏磁共振图像中心肌病患者对心脏重新同步治疗(CRT)反应的问题的框架。提议模型对CRT响应预测任务的敏感性和特异性分别为88.43%和84.39%,我们展示了我们模型在增强对有助于CRT响应因素的理解方面的潜力。

Advances in deep learning (DL) have resulted in impressive accuracy in some medical image classification tasks, but often deep models lack interpretability. The ability of these models to explain their decisions is important for fostering clinical trust and facilitating clinical translation. Furthermore, for many problems in medicine there is a wealth of existing clinical knowledge to draw upon, which may be useful in generating explanations, but it is not obvious how this knowledge can be encoded into DL models - most models are learnt either from scratch or using transfer learning from a different domain. In this paper we address both of these issues. We propose a novel DL framework for image-based classification based on a variational autoencoder (VAE). The framework allows prediction of the output of interest from the latent space of the autoencoder, as well as visualisation (in the image domain) of the effects of crossing the decision boundary, thus enhancing the interpretability of the classifier. Our key contribution is that the VAE disentangles the latent space based on `explanations' drawn from existing clinical knowledge. The framework can predict outputs as well as explanations for these outputs, and also raises the possibility of discovering new biomarkers that are separate (or disentangled) from the existing knowledge. We demonstrate our framework on the problem of predicting response of patients with cardiomyopathy to cardiac resynchronization therapy (CRT) from cine cardiac magnetic resonance images. The sensitivity and specificity of the proposed model on the task of CRT response prediction are 88.43% and 84.39% respectively, and we showcase the potential of our model in enhancing understanding of the factors contributing to CRT response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源