论文标题

在线基于图形的变更点检测多播放图像序列

Online Graph-Based Change Point Detection in Multiband Image Sequences

论文作者

Borsoi, Ricardo Augusto, Richard, Cédric, Ferrari, André, Chen, Jie, Bermudez, José Carlos Moreira

论文摘要

自动检测在不同时间收集的多光谱和高光谱图像之间的变化或异常是一个积极而挑战性的研究主题。为了有效地执行多个临时图像中的更改点检测,重要的是要设计用于处理大型数据集的计算有效的技术,并且不需要了解变化的性质。在本文中,我们介绍了一个新颖的在线框架,用于检测多阶段遥感图像的变化。该算法在图中充当相邻光谱作为相邻的顶点,重点是同时激活与紧凑,连接良好和光谱均匀图像区域相对应的角度组的异常。它完全受益于图形信号处理的最新进展,以利用不规则支持的数据的特征。此外,该图是使用Superpixel分解算法直接从图像估算的。从有效且空间分布的意义上讲,学习算法是可扩展的。实验说明了该方法的检测和定位性能。

The automatic detection of changes or anomalies between multispectral and hyperspectral images collected at different time instants is an active and challenging research topic. To effectively perform change-point detection in multitemporal images, it is important to devise techniques that are computationally efficient for processing large datasets, and that do not require knowledge about the nature of the changes. In this paper, we introduce a novel online framework for detecting changes in multitemporal remote sensing images. Acting on neighboring spectra as adjacent vertices in a graph, this algorithm focuses on anomalies concurrently activating groups of vertices corresponding to compact, well-connected and spectrally homogeneous image regions. It fully benefits from recent advances in graph signal processing to exploit the characteristics of the data that lie on irregular supports. Moreover, the graph is estimated directly from the images using superpixel decomposition algorithms. The learning algorithm is scalable in the sense that it is efficient and spatially distributed. Experiments illustrate the detection and localization performance of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源