论文标题

霍尔电导及相互作用晶格系统中通量插入的统计数据

Hall conductance and the statistics of flux insertions in gapped interacting lattice systems

论文作者

Kapustin, Anton, Sopenko, Nikita

论文摘要

我们研究了零温无限 - 体积间隙晶格系统的电荷运输,并在二维中具有短距离相互作用。我们表明,大厅电导是可以局部计算的,并且对于所有相同差距阶段的系统都是相同的。我们提供了Laughlin插入的严格版本,该版本表明,对于短距离纠缠系统,Hall电导是E^2/h的整数倍数。我们表明,霍尔电导决定了通量插入的统计数据。对于玻感短距离纠缠系统,这意味着霍尔电导是E^2/h的倍数。最后,我们将无需电荷泵的量化证明在一个维度中的无限体积覆盖晶格系统的情况下进行了调整。

We study charge transport for zero-temperature infinite-volume gapped lattice systems in two dimensions with short-range interactions. We show that the Hall conductance is locally computable and is the same for all systems which are in the same gapped phase. We provide a rigorous versions of Laughlin's flux-insertion argument which shows that for short-range entangled systems the Hall conductance is an integer multiple of e^2/h. We show that the Hall conductance determines the statistics of flux insertions. For bosonic short-range entangled systems, this implies that the Hall conductance is an even multiple of e^2/h. Finally, we adapt a proof of quantization of the Thouless charge pump to the case of infinite-volume gapped lattice systems in one dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源