论文标题
二维随机尺度状态的量子标度尺度特性
Quantum-critical scaling properties of the two-dimensional random-singlet state
论文作者
论文摘要
我们使用QMC模拟来研究疾病对$ s = 1/2 $ HEISENBERG模型的效果,并在平方晶格上使用Multispin Itsactions $ Q $进行交换常数$ J $。最近发现了[L. Lu等人,物理。 Rev. X 8,041040(2018)],与随机耦合的这种$ J $ - $ Q $模型的基态经历了从Néel状态到随机性引起的类似自旋液体的状态的量子相变,与随机的随机singlet(RS)近似旋转状态(RS)的随机Heisenberg链的状态非常相似。 2D rs状态来自拓扑缺陷的纺纱果。与1D RS状态一样,相互作用的旋子形成了一个临界状态,其平均自旋旋转相关性与距离$ r $ as $ r^{ - 2} $衰减。动态指数$ z \ ge 2 $,与模型参数连续变化。在这里,我们进一步研究了RS状态的属性,其中$ J $ -Q $型号具有随机$ Q $耦合。我们研究了特定热量的温度依赖性和对足够大系统的各种敏感性,以达到热力学极限,并分析临界磁性参数的尺寸依赖性及其在基态下的易感性。对于所有这些数量,当施加了自旋相关的$ r^{ - 2} $形式时,我们发现与常规量子量表保持一致。所有数量都可以用固定模型参数的动态指数$ z $的相同值来解释。我们认为,在$ j $ - $ q $模型中鉴定的RS状态对应于具有随机耦合的许多量子磁铁中可以达到的通用重归其化组固定点,并且可能已经通过实验观察到。
We use QMC simulations to study effects of disorder on the $S=1/2$ Heisenberg model with exchange constant $J$ on the square lattice supplemented by multispin interactions $Q$. It was found recently [L. Lu et al., Phys. Rev. X 8, 041040 (2018)] that the ground state of this $J$-$Q$ model with random couplings undergoes a quantum phase transition from the Néel state into a randomness-induced spin-liquid-like state that is a close analogue to the well known random-singlet (RS) state of the random Heisenberg chain. The 2D RS state arises from spinons localized at topological defects. The interacting spinons form a critical state with mean spin-spin correlations decaying with distance $r$ as $r^{-2}$, as in the 1D RS state. The dynamic exponent $z \ge 2$, varying continuously with the model parameters. We here further investigate the properties of the RS state in the $J$-$Q$ model with random $Q$ couplings. We study the temperature dependence of the specific heat and various susceptibilities for large enough systems to reach the thermodynamic limit and also analyze the size dependence of the critical magnetic order parameter and its susceptibility in the ground state. For all these quantities, we find consistency with conventional quantum-critical scaling when the condition implied by the $r^{-2}$ form of the spin correlations is imposed. All quantities can be explained by the same value of the dynamic exponent $z$ at fixed model parameters. We argue that the RS state identified in the $J$-$Q$ model corresponds to a generic renormalization group fixed point that can be reached in many quantum magnets with random couplings, and may already have been observed experimentally.