论文标题
遮蔽一个consimension一个部分 - anosov流动
Shadowing for codimension one sectional-Anosov flows
论文作者
论文摘要
在双曲动力学中,一个众所周知的结果是,每个双曲线吸引集都具有有限的伪轨追踪特性(FPOTP)。很自然地想知道是否将此结果保持在截面的纤维动力学中。 Komuro在[Lorenz吸引者没有伪轨追踪属性]中,通过证明几何洛伦兹吸引子没有FPOTP来为这个问题提供负面答案。在本文中,我们概括了Komuro的结果,我们证明了每个截面的肌曲线吸引子设置的具有独特的奇异性Lorenz的样子,它的边界类型没有FPOTP。
In hyperbolic dynamics, a well-known result is that every hyperbolic attracting set, have a finite pseudo-orbit tracing property (FPOTP). It's natural to wonder if this result is maintained in the sectional-hyperbolic dynamics; Komuro in [Lorenz attractors do not have the pseudo-orbit tracing property], provides a negative answer for this question, by proving that the geometric Lorenz Attractor doesn't have a FPOTP. In this paper, we generalized the result of Komuro, we prove that every codimension one sectional-hyperbolic attractor set with a unique singularity Lorenz-like, which is of boundary-type, does not have FPOTP.