论文标题
事件有理曲线
Incident rational curves
论文作者
论文摘要
我们研究有理曲线的家族在满足发生率条件的代数种类上。我们证明了弯曲和破裂的类似物:也就是说,我们表明在适当的条件下,这样的家庭必须包含还原。对于某些完整交叉点事件的$¶^n $中的曲线,我们证明家庭是不可约的。
We study families of rational curves on an algebraic variety satisfying incidence conditions. We prove an analogue of bend-and-break: that is, we show that under suitable conditions, such a family must contain reducibles. In the case of curves in $¶^n$ incident to certain complete intersections, we prove the family is irreducible.