论文标题

多级打字图转换

Multilevel Typed Graph Transformations

论文作者

Wolter, Uwe, Macías, Fernando, Rutle, Adrian

论文摘要

多级建模扩展了传统的建模技术,并具有潜在的无限数量的抽象水平。多级模型可以通过多级键入图正式表示,其操作和转换由多级键入图形变换规则进行。这些规则是三个图的Cospans和两个包含图同构的同构,其中三个图是在一个通用键入链上键入多级图。在本文中,我们表明,可以将键入的图形转换适当地推广到多级键入图形转换,从而改善了转换规则的精确性,灵活性和可重复使用性。我们确定类型的兼容性条件,用于规则及其匹配,分别为方程式和不等式,分别是组成的部分分型形态之间的兼容性条件。这些条件是针对匹配规则应用的至关重要的预设 - 基于俯卧撑和类别图中的基础图的最终回调补充构造 - 始终在多级打字设置中提供明确定义的规范结果。此外,要形式化和分析多级键入,并以系统的方式证明了必要的结果,我们介绍了键入链条和打字链形态的类别链。

Multilevel modeling extends traditional modeling techniques with a potentially unlimited number of abstraction levels. Multilevel models can be formally represented by multilevel typed graphs whose manipulation and transformation are carried out by multilevel typed graph transformation rules. These rules are cospans of three graphs and two inclusion graph homomorphisms where the three graphs are multilevel typed over a common typing chain. In this paper, we show that typed graph transformations can be appropriately generalized to multilevel typed graph transformations improving preciseness, flexibility and reusability of transformation rules. We identify type compatibility conditions, for rules and their matches, formulated as equations and inequations, respectively, between composed partial typing morphisms. These conditions are crucial presuppositions for the application of a rule for a match---based on a pushout and a final pullback complement construction for the underlying graphs in the category Graph---to always provide a well-defined canonical result in the multilevel typed setting. Moreover, to formalize and analyze multilevel typing as well as to prove the necessary results, in a systematic way, we introduce the category Chain of typing chains and typing chain morphisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源