论文标题

量子布朗尼运动:Drude and Ohmic Baths作为Rubin模型的连续限制

Quantum Brownian Motion: Drude and Ohmic Baths as Continuum Limits of the Rubin Model

论文作者

Das, Avijit, Dhar, Abhishek, Santra, Ion, Satpathi, Urbashi, Sinha, Supurna

论文摘要

量子兰格文方程通常描述了热环境中游离量子粒子的运动,其中浴缸的效果通过耗散和噪声项编码,通过波动耗散定理相互相关。量子Langevin方程可以从热浴的微观模型开始,作为以初始平衡状态制备的无限谐波振荡器的收集。浴振荡器的光谱特性及其与粒子的耦合决定了耗散和噪声的特定形式。在这里,我们详细研究了众所周知的鲁宾浴模型,该模型由一个一维谐波链组成,边界浴粒子耦合到布朗粒子。我们展示了如何在无限浴带宽的极限下获得DRUDE模型和无限系统浴耦合的第二个极限,从而提供了欧姆模型。介绍了相关相关函数的详细分析,例如平均平方位移,速度自动相关函数和响应函数,以了解各种时间制度。特别是,我们讨论了量子到经典的交叉时间尺度,在该量表中,均方根排量从$ \ sim \ ln t $变为$ \ sim t $依赖关系。我们将研究与使用线性响应理论的最新工作联系起来,以了解量子布朗尼运动。

The motion of a free quantum particle in a thermal environment is usually described by the quantum Langevin equation, where the effect of the bath is encoded through a dissipative and a noise term, related to each other via the fluctuation dissipation theorem. The quantum Langevin equation can be derived starting from a microscopic model of the thermal bath as an infinite collection of harmonic oscillators prepared in an initial equilibrium state. The spectral properties of the bath oscillators and their coupling to the particle determine the specific form of the dissipation and noise. Here we investigate in detail the well-known Rubin bath model, which consists of a one-dimensional harmonic chain with the boundary bath particle coupled to the Brownian particle. We show how in the limit of infinite bath bandwidth, we get the Drude model and a second limit of infinite system-bath coupling gives the Ohmic model. A detailed analysis of relevant correlation functions, such as the mean squared displacement, velocity auto-correlation functions, and the response function are presented, with the aim of understanding of the various temporal regimes. In particular, we discuss the quantum to classical crossover time scales where the mean square displacement changes from a $\sim \ln t$ to a $\sim t$ dependence. We relate our study to recent work using linear response theory to understand quantum Brownian motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源