论文标题
Euler-Poincaré公式用于正深度伯恩斯坦投影仪
Euler-Poincaré formulae for positive depth Bernstein projectors
论文作者
论文摘要
Bezrukavnikov-Kazhdan-Varshavsky的作品使用了Moy-Prasad群体的琐碎态度的模糊系统,以获取R Depth Bernstein Projector的Euler-Poincaré公式。 Barbasch-ciubotaru-Moy使用帕纳克子组的深度零cuspidal表示,将深度零投影仪的Euler-Poincaré呈现分解。对于积极的深度$ r $,我们建立了基于Moy-Prasad商的Cuspidal Pairs的副类概念的R-Depth Bernstein Projector的Euler-Poincaré演示。我们将这些新的Euler-Poincaré演示文稿应用于施耐德·斯图勒(Schneider-Stuhler)和bestvina-savin决议的分解。
Work of Bezrukavnikov-Kazhdan-Varshavsky uses an equivariant system of trivial idempotents of Moy-Prasad groups to obtain an Euler-Poincaré formula for the r-depth Bernstein projector. Barbasch-Ciubotaru-Moy use depth-zero cuspidal representations of parahoric subgroups to decompose the Euler-Poincaré presentation of the depth-zero projector. For positive depth $r$, we establish a decomposition of the Euler-Poincaré presentation of the r-depth Bernstein projector based on a notion of associate classes of cuspidal pairs for Moy-Prasad quotients. We apply these new Euler-Poincaré presentations to the obtain decompositions of the resolutions of Schneider-Stuhler and Bestvina-Savin.