论文标题

温度和频率对电场还原方法的影响通过非线性场依赖电导率层与电源电子模块的突出底物结合

Influence of Temperature and Frequency on Electric Field Reduction Method via a Nonlinear Field Dependent Conductivity Layer Combined with Protruding Substrate for Power Electronics Modules

论文作者

Tousi, Maryam Mesgarpour, Ghassemi, Mona

论文摘要

如我们先前的研究所示,几何场分级技术(例如堆叠和突出的底物设计)不能很好地缓解电力电子模块中的高电压问题。但是,结果表明,突出的底物设计与应用非线性场依赖性电导率层的结合可以解决该问题。电场(E)模拟是根据IEC 61287-1进行部分放电测试步骤进行的,其中应用了50/60 Hz AC电压。然而,电源设备中的电介质,包括陶瓷底物和硅胶凝胶,可经历高达几百度的高温和高达1 MHz的频率。因此,用上述介电的电参数获得的室温和50/60 Hz以下的电气参数获得的E值可能对上述高温和频率无效。在本文中,我们通过开发有限元方法(FEM)E计算模型来解决此技术差距,在Comsol多物理学中开发的计算模型,在该模型中,对于高达250 C的不同温度和最高1 MHz的频率,进行E计算。使用该模型,评估了上述温度和频率对我们提出的电场缓解技术的影响。

As shown in our previous studies, geometrical field grading techniques such as stacked and protruding substrate designs cannot well mitigate high electric stress issue within power electronics modules. However, it was shown that a combination of protruding substrate design and applying a nonlinear field-dependent conductivity layer could address the issue. Electric field (E) simulations were carried out according to IEC 61287-1 for the partial discharge test measurement step, where a 50/60 Hz AC voltage was applied. However, dielectrics, including ceramic substrate and silicone gel, in power devices undergo high temperatures up to a few hundred degrees and frequencies up to 1 MHz. Thus, E values obtained with electrical parameters of the mentioned dielectrics for room temperature and under 50/60 Hz may not be valid for high temperatures and frequencies mentioned above. In this paper, we address this technical gap through developing a finite element method (FEM) E calculation model developed in COMSOL Multiphysics where E calculations are carried out for different temperatures up to 250 C and frequencies up to 1 MHz. Using the model, the influence of temperature and frequency on our proposed electric field mitigation technique mentioned above is evaluated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源