论文标题

在高性能计算环境中进行大脑映射的主动学习管道

Active Learning Pipeline for Brain Mapping in a High Performance Computing Environment

论文作者

Michaleas, Adam, Gjesteby, Lars A., Snyder, Michael, Chavez, David, Ash, Meagan, Melton, Matthew A., Lamb, Damon G., Burke, Sara N., Otto, Kevin J., Kamentsky, Lee, Guan, Webster, Chung, Kwanghun, Brattain, Laura J.

论文摘要

本文介绍了可扩展的主动学习管道原型,用于利用高性能计算能力的大型大脑映射。它可以对算法结果进行高通量评估,后者在人类审查后将其用于迭代机器学习模型培训。图像处理和机器学习在批处理层进行。使用PMATLAB对图像处理的基准测试表明,可以实现100美元的吞吐量(10,000%),而总处理时间仅在Xeon-G6 CPU上仅增加9%,而在Xeon-E5 CPU上,可以实现22%,这表明可靠的可伸缩性。图像和算法结果是通过将基于浏览器的用户界面的服务层提供的,以进行交互式审核。该管道有可能大大减轻手动注释负担,并改善基于机器学习的大脑映射的整体性能。

This paper describes a scalable active learning pipeline prototype for large-scale brain mapping that leverages high performance computing power. It enables high-throughput evaluation of algorithm results, which, after human review, are used for iterative machine learning model training. Image processing and machine learning are performed in a batch layer. Benchmark testing of image processing using pMATLAB shows that a 100$\times$ increase in throughput (10,000%) can be achieved while total processing time only increases by 9% on Xeon-G6 CPUs and by 22% on Xeon-E5 CPUs, indicating robust scalability. The images and algorithm results are provided through a serving layer to a browser-based user interface for interactive review. This pipeline has the potential to greatly reduce the manual annotation burden and improve the overall performance of machine learning-based brain mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源