论文标题

广义的Paley图及其完整的子图三和四

Generalized Paley graphs and their complete subgraphs of orders three and four

论文作者

Dawsey, Madeline Locus, McCarthy, Dermot

论文摘要

令$ k \ geq 2 $为整数。令$ q $为主要功率,以至于$ q \ equiv 1 \ pmod {k} $如果$ q $是偶数,或者,$ q \ equiv 1 \ equiv 1 \ pmod {2k} $如果$ q $是奇数。订单$ q $,$ g_k(q)$的广义Paley图是带有顶点套装$ \ mathbb {f} _q $的图形,其中$ ab $是当$ ab {a-b} $是一个$ k $ the the Power Restical时。我们提供了一个公式,就有限字段的超几何功能而言,对于$ g_k(q)$,$ \ MATHCAL {k} _4(g_k(q))$中包含的四个订单的完整子图数的数量,该订单均包含在$ g_k(q)$(q)$中。这概括了埃文斯(Evans),普勒姆(Pulham)和希恩(Sheehan)在原始($ k $ = 2)Paley图上的结果。我们还根据jacobi总和提供了一个公式,对于$ g_k(q)$,$ \ MATHCAL {k} _3(g_k(q))$中包含的第三个完整子图的数量。在这两种情况下,我们都会明确确定这些公式的小$ k $。我们表明,$ \ MATHCAL {K} _4(g_k(q))$的零值$(分别为$ \ Mathcal {k} _3(g_k(q))$的零值对多色对角色ramsey number $ r_k(4)= r(4,4,4,4,4,4,4,4,4)$ $(4)$(4)$(RAM)$(4)$(RAM)$(4)$(RAM)$(RAM)$(RAM)$(4)我们对小$ K $明确说明这些下限,并与已知的界限进行比较。我们还检查了$ \ MATHCAL {K} _4(g_k(q))$和$ \ MATHCAL {K} _3(g_k(q))$之间的关系,当$ q $是prime,而模块化形式的傅立叶系数。

Let $k \geq 2$ be an integer. Let $q$ be a prime power such that $q \equiv 1 \pmod {k}$ if $q$ is even, or, $q \equiv 1 \pmod {2k}$ if $q$ is odd. The generalized Paley graph of order $q$, $G_k(q)$, is the graph with vertex set $\mathbb{F}_q$ where $ab$ is an edge if and only if ${a-b}$ is a $k$-th power residue. We provide a formula, in terms of finite field hypergeometric functions, for the number of complete subgraphs of order four contained in $G_k(q)$, $\mathcal{K}_4(G_k(q))$, which holds for all $k$. This generalizes the results of Evans, Pulham and Sheehan on the original ($k$=2) Paley graph. We also provide a formula, in terms of Jacobi sums, for the number of complete subgraphs of order three contained in $G_k(q)$, $\mathcal{K}_3(G_k(q))$. In both cases we give explicit determinations of these formulae for small $k$. We show that zero values of $\mathcal{K}_4(G_k(q))$ (resp. $\mathcal{K}_3(G_k(q))$) yield lower bounds for the multicolor diagonal Ramsey numbers $R_k(4)=R(4,4,\cdots,4)$ (resp. $R_k(3)$). We state explicitly these lower bounds for small $k$ and compare to known bounds. We also examine the relationship between both $\mathcal{K}_4(G_k(q))$ and $\mathcal{K}_3(G_k(q))$, when $q$ is prime, and Fourier coefficients of modular forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源