论文标题
射线变换数据破裂的关节散射和衰减估计的迭代算法
Iterative Algorithms for Joint Scatter and Attenuation Estimation From Broken Ray Transform Data
论文作者
论文摘要
在许多层析成像问题中,单粒近似是基本的,包括X射线散射成像和某些介质的光学散射成像。在所有情况下,嘈杂的测量结果都受到局部散射事件和非本地衰减的影响。先前的工作重点是重建两个图像之一:散点密度或总衰减。但是,这两个图像都是特定于媒体的,可用于对象识别。 衰减图像对数据的非局部效应总结了破裂的射线变换(BRT)。尽管存在分析反演公式,但逆问题的条件差仅会因嘈杂的测量和采样误差而加剧。这激发了人们对相关星变换的兴趣,该星星转换结合了来自多个源检测对的BRT测量值。但是,所有分析方法均根据数据日志运行。对于包括没有分散区域的区域的媒体,需要采用新方法。 我们是第一个基于单粒度测量几何形状的泊松数据模型提供联合估计算法的人。在交替的图像更新时,可以保证我们的迭代算法的单调降低对数可能的函数。我们还提出了用于计算离散BRT向前操作员的快速算法。我们的广义方法可以合并来自多个源检测对的传输和散射测量。传输测量结果解决了关节图像估计问题中的低频歧义,而多个散点测量结果解决了衰减图像。与单图像估计相比,关节估计的好处因问题缩放而异。我们的结果量化了这些好处,并应告知未来采集系统的设计。
The single-scatter approximation is fundamental in many tomographic imaging problems including x-ray scatter imaging and optical scatter imaging for certain media. In all cases, noisy measurements are affected by both local scatter events and nonlocal attenuation. Prior works focus on reconstructing one of two images: scatter density or total attenuation. However, both images are media specific and useful for object identification. Nonlocal effects of the attenuation image on the data are summarized by the broken ray transform (BRT). While analytic inversion formulas exist, poor conditioning of the inverse problem is only exacerbated by noisy measurements and sampling errors. This has motivated interest in the related star transforms incorporating BRT measurements from multiple source-detector pairs. However, all analytic methods operate on the log of the data. For media comprising regions with no scatter a new approach is required. We are the first to present a joint estimation algorithm based on Poisson data models for a single-scatter measurement geometry. Monotonic reduction of the log-likelihood function is guaranteed for our iterative algorithm while alternating image updates. We also present a fast algorithm for computing the discrete BRT forward operator. Our generalized approach can incorporate both transmission and scatter measurements from multiple source-detector pairs. Transmission measurements resolve low-frequency ambiguity in the joint image estimation problem, while multiple scatter measurements resolve the attenuation image. The benefits of joint estimation, over single-image estimation, vary with problem scaling. Our results quantify these benefits and should inform design of future acquisition systems.