论文标题
非本地运动常数拉格朗日动力学
Lagrangian dynamics by nonlocal constants of motion
论文作者
论文摘要
一个简单的通用定理用作生成拉格朗日系统运动非本地运动常数的工具。我们审查了一些情况下,我们发现的常数在系统的研究中很有用:〜$ -2 $的均质电势,具有粘性液体耐药性的机械系统以及激光动力学的保守和耗散性的Maxwell-Bloch方程。我们还证明了过去对具有液压(二次)流体电阻和有界电势的机械系统爆炸的新结果。
A simple general theorem is used as a tool that generates nonlocal constants of motion for Lagrangian systems. We review some cases where the constants that we find are useful in the study of the systems: the homogeneous potentials of degree~$-2$, the mechanical systems with viscous fluid resistance and the conservative and dissipative Maxwell-Bloch equations of laser dynamics. We also prove a new result on explosion in the past for mechanical system with hydraulic (quadratic) fluid resistance and bounded potential.