论文标题
I型I型中红外INGAASSB量子井井激光器中的螺旋钻重组系数
Auger Recombination Coefficients in Type-I Mid-Infrared InGaAsSb Quantum Well Lasers
论文作者
论文摘要
通过对阈值电流密度的系统研究,与温度和静水压力的函数以及对增益和阈值载体密度的理论分析,我们确定了Ingaassb/gasb/gasb量子量激光器在1.7-3.2 $ $ m $ m $ m $ m波动范围内发射的螺旋螺旋体重组系数的波长依赖性。从静水压力测量值中,单个激光器的阈值电流的非辐射分量被连续确定为波长的函数。分析结果以定量确定螺旋钻系数。此过程涉及根据设备特性,光损耗和估计的螺旋钻对总阈值电流密度的贡献来计算阈值载体密度。我们观察到螺旋钻率的最低限度约为2.1美元$ $ m。随着中红外波长的降低(<2 $μ$ m)的强劲增长表明,价矿间螺旋钻向分裂孔带(CHSH工艺)的重要作用。高于2 $μ$ m,由于CHCC或CHLH螺旋螺旋螺旋体的重组,波长的增加大约是指数级的,从而限制了长波长操作。观察到的依赖性与通过分析类型I IngaASSB量子二极管二极管的激光阈值的文献值得出的依赖性一致。在考虑的波长范围内,钻钻系数与至少$ \ leq $ 1x10 $^{16} $ cm $^{4} $ s $^{ - 1} $ at 2.1 $ m $ m至〜8x10 $^{16} $^{16} $ cm $^{4} $^{4} $ s $ s $ s $ s $
From a systematic study of the threshold current density as a function of temperature and hydrostatic pressure, in conjunction with theoretical analysis of the gain and threshold carrier density, we have determined the wavelength dependence of the Auger recombination coefficients in InGaAsSb/GaSb quantum well lasers emitting in the 1.7-3.2 $μ$m wavelength range. From hydrostatic pressure measurements, the non-radiative component of threshold currents for individual lasers was determined continuously as a function of wavelength. The results are analysed to determine the Auger coefficients quantitatively. This procedure involves calculating the threshold carrier density based on device properties, optical losses, and estimated Auger contribution to the total threshold current density. We observe a minimum in the Auger rate around 2.1 $μ$m. A strong increase with decreasing mid-infrared wavelength (< 2 $μ$m) indicates the prominent role of inter-valence Auger transitions to the split-off hole band (CHSH process). Above 2 $μ$m, the increase with wavelength is approximately exponential due to CHCC or CHLH Auger recombination, limiting long wavelength operation. The observed dependence is consistent with that derived by analysing literature values of lasing thresholds for type-I InGaAsSb quantum well diodes. Over the wavelength range considered, the Auger coefficient varies from a minimum of $\leq$ 1x10$ ^{16}$cm$^{4}$s$^{-1}$ at 2.1 $μ$m to ~8x10$^{16}$cm$^{4}$s$^{-1}$ at 3.2 $μ$m.