论文标题
有关凸子类别的几个结果
Several Results Concerning Convex Subcategories
论文作者
论文摘要
我们将完整凸子类别的概念应用于各种代数,包括倾斜,准倾斜,shod,shod,弱shod,左右胶合,左右胶合,laura,简单地连接,紧密地连接,左支持,左支持和集群倾斜。特别是,在上述类中的一个代数$λ$的情况下,我们研究了某些因子代数$λ/i $,其中$ i $是合适的diadempotent产生的理想。
We apply the notion of a full convex subcategory to a wide range of algebras including tilted, quasi-tilted, shod, weakly shod, left and right glued, laura, simply connected, strongly simply connected, left supported, and cluster-tilted. In particular, given an algebra $Λ$ from one of the aforementioned classes, we investigate certain factor algebras $Λ/I$ where $I$ is an ideal generated by a suitable idempotent.