论文标题

建造一系列新的$ν= 2/5 $分数量子霍尔波函数通过共形场理论

Construction of a series of new $ν=2/5$ fractional quantum Hall wave functions by conformal field theory

论文作者

Chen, Li, Yang, Kun

论文摘要

在本文中,一系列$ν= 2/5 $分数量子霍尔波函数由共形场理论(CFT)构建。他们与Ja那教的复合费用方法构建的状态共享相同的拓扑特性。在确切的最低Landau级别(LLL)投影下,如果不满足本文附录中给出的Landau级别指数的约束,某些Ja那教复合式态态将无法生存。相比之下,由CFT构建的州总是留在LLL中。这些状态的特征是不同的拓扑转移和多体相对角动量。作为副产品,在附录中,我们证明了一般$ν= p/(2p+1)的必要条件,$ composite fermion状态具有不变的lll投影。

In this paper, a series of $ν=2/5$ fractional quantum Hall wave functions are constructed from conformal field theory(CFT). They share the same topological properties with states constructed by Jain's composite fermion approach. Upon exact lowest Landau level(LLL) projection, some of Jain composite fermion states would not survive if constraints on Landau level indices given in the appendices of this paper were not satisfied. By contrast, states constructed from CFT always stay in LLL. These states are characterized by different topological shifts and multibody relative angular momenta. As a by-product, in the appendices we prove the necessary conditions for general $ ν=p/(2p+1) $ composite fermion states to have nonvanishing LLL projection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源