论文标题
在浆果曲率和轨道磁矩方面
Microscopic theory of magnetoconductivity at low magnetic fields in terms of Berry curvature and orbital magnetic moment
论文作者
论文摘要
使用显微镜理论,在低磁场处使用磁性电导率,我们显示了如何在低散射速率极限中计算大厅和纵向电导率。在散射速率的最低顺序下,我们恢复了半经典玻尔兹曼运输理论的结果。在更高阶段,我们得到包含浆果曲率和轨道磁矩的校正。我们使用这种形式主义来研究倾斜的Weyl半法的线性纵向磁导率。我们讨论了我们的结果如何与半经典玻尔兹曼方法相关,并显示了与先前与轨道磁矩有关的研究相比所产生的差异。
Using a microscopic theory for the magnetoconductivity at low magnetic fields we show how the Hall and longitudinal conductivity can be calculated in the low scattering rate limit. In the lowest order of the scattering rate, we recover the result of the semiclassical Boltzmann transport theory. At higher order, we get corrections containing the Berry curvature and the orbital magnetic moment. We use this formalism to study the linear longitudinal magnetoconductivity in tilted Weyl semimetals. We discuss how our result is related to the semiclassical Boltzmann approach and show the differences that arise compared to previous studies related to the orbital magnetic moment.