论文标题

对抗性多源转移在医疗保健中学习:糖尿病患者葡萄糖预测的应用

Adversarial Multi-Source Transfer Learning in Healthcare: Application to Glucose Prediction for Diabetic People

论文作者

De Bois, Maxime, Yacoubi, Mounîm A. El, Ammi, Mehdi

论文摘要

尽管有一些特定的任务,但深度学习尚未彻底改变医疗保健方面的一般实践。这部分是由于数据数量不足损害了模型的训练。为了解决这个问题,可以通过使用转移学习来利用其异质性来结合来自多个健康参与者或患者的数据。 为了提高多个数据源之间的传输质量,我们提出了一个多源对抗传输学习框架,该框架能够学习在整个源中相似的特征表示形式,从而更一般,更容易转移。我们将此想法应用于使用完全卷积神经网络对糖尿病患者的葡萄糖预测。评估是通过探索各种传输方案的三个数据集来完成的,其特征在于它们的高间变异性和内部变异性。 尽管传递知识通常是有益的,但我们表明,通过使用对抗性训练方法,可以进一步改善统计和临床精度,从而超过当前的最新结果。特别是,当使用来自不同数据集的数据时,或者在数据集中的情况下数据太少时会发光。为了了解模型的行为,我们分析了学习的特征表示,并在这方面提出了一个新的指标。与标准转移相反,对抗转移不会区分患者和数据集,从而帮助学习更通用的特征表示。 对抗训练框架改善了在多源环境中的一般特征表示形式的学习,从而增强了知识转移到看不见的目标。 提出的方法可以帮助提高不同卫生参与者在深层模型培训中共享的数据效率。

Deep learning has yet to revolutionize general practices in healthcare, despite promising results for some specific tasks. This is partly due to data being in insufficient quantities hurting the training of the models. To address this issue, data from multiple health actors or patients could be combined by capitalizing on their heterogeneity through the use of transfer learning. To improve the quality of the transfer between multiple sources of data, we propose a multi-source adversarial transfer learning framework that enables the learning of a feature representation that is similar across the sources, and thus more general and more easily transferable. We apply this idea to glucose forecasting for diabetic people using a fully convolutional neural network. The evaluation is done by exploring various transfer scenarios with three datasets characterized by their high inter and intra variability. While transferring knowledge is beneficial in general, we show that the statistical and clinical accuracies can be further improved by using of the adversarial training methodology, surpassing the current state-of-the-art results. In particular, it shines when using data from different datasets, or when there is too little data in an intra-dataset situation. To understand the behavior of the models, we analyze the learnt feature representations and propose a new metric in this regard. Contrary to a standard transfer, the adversarial transfer does not discriminate the patients and datasets, helping the learning of a more general feature representation. The adversarial training framework improves the learning of a general feature representation in a multi-source environment, enhancing the knowledge transfer to an unseen target. The proposed method can help improve the efficiency of data shared by different health actors in the training of deep models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源