论文标题

晶格正规化$ ϕ_4^4 $带有流程方程的扰动重归其化

Perturbative renormalization of the lattice regularized $ϕ_4^4$ with flow equations

论文作者

Borji, Majdouline, Kopper, Christoph

论文摘要

重新归一化组的流动方程允许分析可逆转量子量子的扰动$ n $点功能。严格的界限意味着可控制循环数量和参数数量$ n $的巨大动量行为,红外奇异行为和大订单行为的范围允许。在本文中,我们分析了欧几里得$ 4 $二维的巨大$ ϕ_4 $ - 使用晶格正则化理论。我们提出了一个严格的证据,即这种量子场理论是可恢复的,这是基于流程方程的循环扩展的所有顺序。已知晶格可以打破时空的欧几里得对称性。我们的主要结果是使用流程方程恢复欧几里得对称性的证明。

The flow equations of the renormalization group allow to analyse the perturbative $n$-point functions of renormalizable quantum filed theories. Rigorous bounds implying renormalizability permit to control large momentum behaviour, infrared singularities and large order behaviour in the number of loops and the number of arguments $n$. In this paper, we analyse the Euclidean $4$-dimensional massive $ϕ_4$-theory using lattice regularization. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of the loop expansion based on the flow equations. The lattice is known to break the Euclidean symmetry of the space-time. Our main result is the proof of the restoration of the Euclidean symmetries using the flow equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源