论文标题

从投影的形状通过可区分的前向投影仪进行计算机断层扫描

Shape from Projections via Differentiable Forward Projector for Computed Tomography

论文作者

Koo, Jakeoung, Dahl, Anders B., Bærentzen, J. Andreas, Chen, Qiongyang, Bals, Sara, Dahl, Vedrana A.

论文摘要

在计算机断层扫描中,通常在体素电网上获得重建。但是,在这项工作中,我们提出了一种基于网格的重建方法。对于断层扫描问题,已经研究了3D网格,以模拟数据采集,但不是为了重建,3D网格意味着从投影中估算形状的反向过程。在本文中,我们为3D网格提出了一个可区分的远期模型,该模型弥合了3D表面和优化的前向模型之间的差距。我们将远期预测视为一个渲染过程,并通过在可区分渲染中扩展最新工作来使其可区分。我们使用拟议的前向模型直接从预测中重建3D形状。单对象问题的实验结果表明,该提出的方法在嘈杂的模拟数据上优于基于传统的体素方法。我们还将提出的方法应用于纳米颗粒的电子断层扫描图像,以证明该方法在实际数据上的适用性。

In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering. We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源