论文标题

圆顶:监督机器学习验证的建议

DOME: Recommendations for supervised machine learning validation in biology

论文作者

Walsh, Ian, Fishman, Dmytro, Garcia-Gasulla, Dario, Titma, Tiina, Pollastri, Gianluca, group, The ELIXIR Machine Learning focus, Harrow, Jen, Psomopoulos, Fotis E., Tosatto, Silvio C. E.

论文摘要

现代生物学通常依靠机器学习来提供预测并改善决策过程。最近有呼吁对机器学习绩效和可能的限制进行更多审查。在这里,我们提出了一系列社区范围的建议,旨在帮助建立生物学中监督机器学习验证的标准。基于数据,优化,模型,评估(圆顶)采用结构化方法描述,旨在帮助审阅者和读者更好地理解和评估方法或结果的性能和局限性。这些建议是向希望追求机器学习算法实施的任何人提出的问题。这些问题的答案可以很容易地包括在已发表论文的补充材料中。

Modern biology frequently relies on machine learning to provide predictions and improve decision processes. There have been recent calls for more scrutiny on machine learning performance and possible limitations. Here we present a set of community-wide recommendations aiming to help establish standards of supervised machine learning validation in biology. Adopting a structured methods description for machine learning based on data, optimization, model, evaluation (DOME) will aim to help both reviewers and readers to better understand and assess the performance and limitations of a method or outcome. The recommendations are formulated as questions to anyone wishing to pursue implementation of a machine learning algorithm. Answers to these questions can be easily included in the supplementary material of published papers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源