论文标题
通过嘈杂量子计算机上的最大似然估计幅度估算
Amplitude estimation via maximum likelihood on noisy quantum computer
论文作者
论文摘要
最近,我们发现了几种量子算法的候选者,可以在近期设备中实现,以估计给定量子状态的幅度,这是诸如Monte Carlo方法等各种计算任务中的核心亚常规。这些算法之一是基于并行化量子电路的最大似然估计。在本文中,我们扩展了此方法,使其结合了逼真的噪声效应,然后在超导IBM量子设备上进行实验演示。假设去极化噪声的模型构建最大似然估计器。然后,我们将问题提出为两参数估计问题,相对于目标振幅参数和噪声参数。特别是我们表明存在异常的目标值,其中Fisher Information Matrix变成退化,因此即使通过增加幅度扩增的数量也无法改善估计误差。实验证明表明,提出的最大似然估计器在查询数量中实现了量子加速,尽管估计误差由于噪声而饱和。估计误差的饱和值与该理论一致,这意味着去极化噪声模型的有效性,从而使我们能够预测量子计算机中硬件组件(尤其是栅极误差)的基本需求(尤其是栅极误差)。
Recently we find several candidates of quantum algorithms that may be implementable in near-term devices for estimating the amplitude of a given quantum state, which is a core sub- routine in various computing tasks such as the Monte Carlo methods. One of those algorithms is based on the maximum likelihood estimate with parallelized quantum circuits. In this paper, we extend this method so that it incorporates the realistic noise effect, and then give an experimental demonstration on a superconducting IBM Quantum device. The maximum likelihood estimator is constructed based on the model assuming the depolarization noise. We then formulate the problem as a two-parameters estimation problem with respect to the target amplitude parameter and the noise parameter. In particular we show that there exist anomalous target values, where the Fisher information matrix becomes degenerate and consequently the estimation error cannot be improved even by increasing the number of amplitude amplifications. The experimental demonstration shows that the proposed maximum likelihood estimator achieves quantum speedup in the number of queries, though the estimation error saturates due to the noise. This saturated value of estimation error is consistent to the theory, which implies the validity of the depolarization noise model and thereby enables us to predict the basic requirement on the hardware components (particularly the gate error) in quantum computers to realize the quantum speedup in the amplitude estimation task.