论文标题

$ \ $ \ MATHCAL L $ -INVARIANT的$ 2 $二维半稳定表示

Reductions of $2$-dimensional semi-stable representations with large $\mathcal L$-invariant

论文作者

Bergdall, John, Levin, Brandon, Liu, Tong

论文摘要

我们确定减少二维,不可修复,半稳定和非晶体的表示,$ \ mathrm {gal}(\ overline {\ Mathbb Q} _p/\ mathbb q_pbb q_p Q_p)$带有hodge-tate $ 0 <k-1 $ and $ i \ nord $ -nord $ -nord $ -IS-pecly-Pixed whorn $ -invarianT在$ k $上。我们的主要结果为$ k \ geq p $减少的第一个系统示例提供了第一个系统示例。

We determine reductions of 2-dimensional, irreducible, semi-stable, and non-crystalline representations of $\mathrm{Gal}(\overline{\mathbb Q}_p/\mathbb Q_p)$ with Hodge--Tate weights $0 < k-1$ and with $\mathcal L$-invariant whose $p$-adic norm is sufficiently large, depending on $k$. Our main result provides the first systematic examples of the reductions for $k \geq p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源