论文标题

指数多价禁止配置

Exponential multivalued forbidden configurations

论文作者

Dillon, Travis, Sali, Attila

论文摘要

禁止数字$ \ mathrm {forb}(m,f)$表示,它在$ m $ $ $(0,1)$ - 矩阵中的最大数量唯一的列数,而没有$ f $的行和列置换列的子矩阵,它已在极端集合理论中得到了广泛研究。最近,此功能扩展到$ r $ - matrices,其条目位于$ \ {0,1,\ dots,r-1 \} $中。广义禁止数字的组合学不那么精心研究。在本文中,我们提供了许多$(0,1)$ - 矩阵$ f $的确切界限,包括$ r> 3 $时的所有$ 2 $ rowed矩阵。我们还证明了$ 2 \ times 2 $ Identity矩阵的稳定性结果。在此过程中,我们在案例$ r = 2 $,$ r = 3 $和$ r> 3 $之间暴露了一些有趣的定性差异。

The forbidden number $\mathrm{forb}(m,F)$, which denotes the maximum number of unique columns in an $m$-rowed $(0,1)$-matrix with no submatrix that is a row and column permutation of $F$, has been widely studied in extremal set theory. Recently, this function was extended to $r$-matrices, whose entries lie in $\{0,1,\dots,r-1\}$. The combinatorics of the generalized forbidden number is less well-studied. In this paper, we provide exact bounds for many $(0,1)$-matrices $F$, including all $2$-rowed matrices when $r > 3$. We also prove a stability result for the $2\times 2$ identity matrix. Along the way, we expose some interesting qualitative differences between the cases $r=2$, $r = 3$, and $r > 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源