论文标题
Smaug的第一个结果:从一组局部星形银河磁盘模拟的套件中表征多相的银河流出。
First results from SMAUG: Characterization of Multiphase Galactic Outflows from a Suite of Local Star-Forming Galactic Disk Simulations
论文作者
论文摘要
观察到星形星系中的大规模流出是无处不在的,并且是宇宙学环境中银河进化的理论建模的一个关键方面,即Smaug的重点(模拟多尺度天体物理学以了解星系)项目。从银河系盘中吹出的气体,类似于星系中的气体,由多个相对形成较大的密度,温度和其他特性的阶段组成。为了将多相流出作为新现象,我们使用老虎框架运行了一套〜PC分辨率的局部银河系磁盘模拟。星际介质(ISM)的显式建模,包括恒星形成和自洽辐射加热以及超新星反馈,调节ISM属性并驱动流出。我们研究了具有银河磁盘特性的流出质量,动量,能量和金属负载因子的缩放,包括恒星形成速率(SFR)表面密度(σ_SFR〜10^{ - 4} -1 m_sun/kpc^2/yr),气体表面密度,〜1-100 m_sun/pc^2)和总体压力(或plape^3^3-10^3-1 cm^{ - 3} k)。流出气体的主要组成部分是质量散发的凉气(T〜10^4 K)和能量/金属传递热气(T〜10^6 K)。在流出发射点(一个或两个比例高度)下测得的凉爽质量流出率是SFR的1-100倍(使用σ_SFR降低),尽管在大型星系中,由于流出速度不足,大多数质量都退回了。热银河流出的质量与SFR的10%相当,共10-20%的能量和SN反馈注入的金属质量的30-60%。两个阶段的特征流速度与SFR非常微弱,因为V_OUT \ proptoσ_sfr^{0.1〜0.2},与观测值一致。重要的是,我们的分析表明,在任何物理动机的宇宙风模型中,至少包括两个不同的热风组件至关重要。
Large scale outflows in star-forming galaxies are observed to be ubiquitous, and are a key aspect of theoretical modeling of galactic evolution in a cosmological context, the focus of the SMAUG (Simulating Multiscale Astrophysics to Understand Galaxies) project. Gas blown out from galactic disks, similar to gas within galaxies, consists of multiple phases with large contrasts of density, temperature, and other properties. To study multiphase outflows as emergent phenomena, we run a suite of ~pc-resolution local galactic disk simulations using the TIGRESS framework. Explicit modeling of the interstellar medium (ISM), including star formation and self-consistent radiative heating plus supernova feedback, regulates ISM properties and drives the outflow. We investigate the scaling of outflow mass, momentum, energy, and metal loading factors with galactic disk properties, including star formation rate (SFR) surface density (Σ_SFR~10^{-4}-1 M_sun/kpc^2/yr), gas surface density (~1-100 M_sun/pc^2), and total midplane pressure (or weight) (~10^3-10^6 k_B cm^{-3} K). The main components of outflowing gas are mass-delivering cool gas (T~10^4 K) and energy/metal-delivering hot gas (T~10^6 K). Cool mass outflow rates measured at outflow launch points (one or two scale heights) are 1-100 times the SFR (decreasing with Σ_SFR), although in massive galaxies most mass falls back due to insufficient outflow velocity. The hot galactic outflow carries mass comparable to 10% of the SFR, together with 10-20% of the energy and 30-60% of the metal mass injected by SN feedback. The characteristic outflow velocities of both phases scale very weakly with SFR, as v_out \propto Σ_SFR^{0.1~0.2}, consistent with observations. Importantly, our analysis demonstrates that in any physically-motivated cosmological wind model, it is crucial to include at least two distinct thermal wind components.