论文标题

对前列腺癌放射疗法的深度学习预测:模型适应不同的治疗计划实践

Dose Prediction with Deep Learning for Prostate Cancer Radiation Therapy: Model Adaptation to Different Treatment Planning Practices

论文作者

Kandalan, Roya Norouzi, Nguyen, Dan, Rezaeian, Nima Hassan, Barragan-Montero, Ana M., Breedveld, Sebastiaan, Namuduri, Kamesh, Jiang, Steve, Lin, Mu-Han

论文摘要

这项工作旨在研究针对前列腺癌的体积调制电弧疗法(VMAT)预先开发的深度学习(DL)剂量预测模型的普遍性,并将模型适应三种不同的内部治疗计划样式和一种外部机构计划样式。我们通过计划的108名先前接受过VMAT治疗的前列腺癌治疗的患者的数据来建立源模型。对于转移学习,我们选择了计划的患者案例计划,这些病例计划从同一机构和一种从不同机构的样式进行了三种不同样式的案例,以使源模型适应四个目标模型。 We compared the dose distributions predicted by the source model and the target models with the clinical dose predictions and quantified the improvement in the prediction quality for the target models over the source model using the Dice similarity coefficients (DSC) of 10% to 100% isodose volumes and the dose-volume-histogram (DVH) parameters of the planning target volume and the organs-at-risk.源模型可以准确预测以相同源样式生成的计划的剂量分布,但针对三种内部和一种外部目标样式进行了优化,平均DSC分别为0.81-0.94和0.82-0.91,内部和外部样式的均值范围在0.81-0.91之间。通过转移学习,内部和外部样式的目标模型预测分别将平均DSC提高到0.88-0.95和0.92-0.96。目标模型预测显着将DVH参数预测的准确性提高到1.6%以内。我们证明了基于DL的剂量预测的模型推广性以及使用转移学习解决此问题的可行性。每种样式的14-29个案例,我们成功地将源模型调整为几种不同的练习方式。这表明了一种现实的方法,可以广泛地实施基于DL的剂量预测。

This work aims to study the generalizability of a pre-developed deep learning (DL) dose prediction model for volumetric modulated arc therapy (VMAT) for prostate cancer and to adapt the model to three different internal treatment planning styles and one external institution planning style. We built the source model with planning data from 108 patients previously treated with VMAT for prostate cancer. For the transfer learning, we selected patient cases planned with three different styles from the same institution and one style from a different institution to adapt the source model to four target models. We compared the dose distributions predicted by the source model and the target models with the clinical dose predictions and quantified the improvement in the prediction quality for the target models over the source model using the Dice similarity coefficients (DSC) of 10% to 100% isodose volumes and the dose-volume-histogram (DVH) parameters of the planning target volume and the organs-at-risk. The source model accurately predicts dose distributions for plans generated in the same source style but performs sub-optimally for the three internal and one external target styles, with the mean DSC ranging between 0.81-0.94 and 0.82-0.91 for the internal and the external styles, respectively. With transfer learning, the target model predictions improved the mean DSC to 0.88-0.95 and 0.92-0.96 for the internal and the external styles, respectively. Target model predictions significantly improved the accuracy of the DVH parameter predictions to within 1.6%. We demonstrated model generalizability for DL-based dose prediction and the feasibility of using transfer learning to solve this problem. With 14-29 cases per style, we successfully adapted the source model into several different practice styles. This indicates a realistic way to widespread clinical implementation of DL-based dose prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源