论文标题

迪拉克型超图中有色的汉密尔顿周期

Properly colored Hamilton cycles in Dirac-type hypergraphs

论文作者

Antoniuk, Sylwia, Kamčev, Nina, Ruciński, Andrzej

论文摘要

我们认为在$ K $均匀的超图中,Dirac型问题的强大变体。例如,我们证明,如果$ h $是$ k $均匀的超图,最低代码和至少$(1/2 +γ)n $,$γ> 0 $,而$ n $则足够大,那么满足适当的本地约束的任何边缘着色$ ϕ $都会在$ h $中产生适当的颜色颜色的紧密汉密尔顿周期。还显示了相似的循环结果。

We consider a robust variant of Dirac-type problems in $k$-uniform hypergraphs. For instance, we prove that if $H$ is a $k$-uniform hypergraph with minimum codegree at least $(1/2 + γ)n$, $γ>0$, and $n$ is sufficiently large, then any edge coloring $ϕ$ satisfying appropriate local constraints yields a properly colored tight Hamilton cycle in $H$. Similar results for loose cycles are also shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源