论文标题
通过可微分的Hebbian可塑性启用持续学习
Enabling Continual Learning with Differentiable Hebbian Plasticity
论文作者
论文摘要
持续学习是在保护先前获得的知识的同时依次学习新任务或知识的问题。但是,灾难性忘记对执行此类学习过程的神经网络构成了巨大的挑战。因此,在现实世界中部署的神经网络通常在数据分布是非平稳(概念漂移),不平衡或不总是完全可用的情况下(即稀有边缘案例)而挣扎。我们提出了一个可区分的HEBBIAN合并模型,该模型由可分解的HEBBIAN可塑性(DHP)软效果层组成,该层为固定的(慢变化)参数添加了快速学习的塑料组件(压缩的情节内存);使学习的表示形式保留在更长的时间尺度上。我们通过整合众所周知的特定任务突触合并方法来证明我们方法的灵活性,以惩罚对每个目标任务很重要的慢重量变化。我们在排列的MNIST,Split MNIST和Vision Dataset混合基准上评估了我们的方法,并引入了置换的MNIST的不平衡变体,该数据集结合了类不平衡和概念漂移的挑战。我们提出的模型不需要额外的超参数,并且通过减少遗忘来胜过可比的基线。
Continual learning is the problem of sequentially learning new tasks or knowledge while protecting previously acquired knowledge. However, catastrophic forgetting poses a grand challenge for neural networks performing such learning process. Thus, neural networks that are deployed in the real world often struggle in scenarios where the data distribution is non-stationary (concept drift), imbalanced, or not always fully available, i.e., rare edge cases. We propose a Differentiable Hebbian Consolidation model which is composed of a Differentiable Hebbian Plasticity (DHP) Softmax layer that adds a rapid learning plastic component (compressed episodic memory) to the fixed (slow changing) parameters of the softmax output layer; enabling learned representations to be retained for a longer timescale. We demonstrate the flexibility of our method by integrating well-known task-specific synaptic consolidation methods to penalize changes in the slow weights that are important for each target task. We evaluate our approach on the Permuted MNIST, Split MNIST and Vision Datasets Mixture benchmarks, and introduce an imbalanced variant of Permuted MNIST -- a dataset that combines the challenges of class imbalance and concept drift. Our proposed model requires no additional hyperparameters and outperforms comparable baselines by reducing forgetting.