论文标题
一个简单的域转移网络,用于产生低质量的图像
A Simple Domain Shifting Networkfor Generating Low Quality Images
论文作者
论文摘要
事实证明,深度学习系统对于图像识别任务非常成功,这些任务可用于大量培训数据,例如在著名的Imagenet数据集中。我们证明,对于具有廉价相机设备的机器人应用程序,低图像质量会影响分类准确性,并且无法以直截了当的方式利用免费的数据库来训练分类器以在机器人上使用。作为解决方案,我们建议训练网络以降低质量图像,以模仿特定的低质量成像系统。数值实验表明,通过使用我们的质量降解网络产生的图像而训练的分类网络以及高质量的图像在真实机器人系统上使用时仅在高质量数据上训练的高质量分类网络,同时比竞争零拍摄的域适应技术更容易使用。
Deep Learning systems have proven to be extremely successful for image recognition tasks for which significant amounts of training data is available, e.g., on the famous ImageNet dataset. We demonstrate that for robotics applications with cheap camera equipment, the low image quality, however,influences the classification accuracy, and freely available databases cannot be exploited in a straight forward way to train classifiers to be used on a robot. As a solution we propose to train a network on degrading the quality images in order to mimic specific low quality imaging systems. Numerical experiments demonstrate that classification networks trained by using images produced by our quality degrading network along with the high quality images outperform classification networks trained only on high quality data when used on a real robot system, while being significantly easier to use than competing zero-shot domain adaptation techniques.