论文标题

语音增强算法基于非负隐藏的马尔可夫模型和kullback-leibler Divergence

A Speech Enhancement Algorithm based on Non-negative Hidden Markov Model and Kullback-Leibler Divergence

论文作者

Xiang, Yang, Shi, Liming, Højvang, Jesper Lisby, Rasmussen, Morten Højfeldt, Christensen, Mads Græsbøll

论文摘要

在本文中,我们提出了一种新型监督的单渠道语音增强方法,梳理基于Kullback-Leibler Divergence的非阴性矩阵分解(NMF)和隐藏的Markov模型(NMF-HMM)。使用HMM的应用,可以考虑语音信号的时间动态信息。在训练阶段,泊松的总和导致了KL差异度量,用作每个HMM状态的观察模型。这样可以确保可以将计算有效的乘法更新用于所提出模型的参数更新。在在线增强阶段,我们提出了一个新型的NMF-HMM的新型均方误差(MMSE)估计器。可以使用并行计算实现此估计器,从而节省时间复杂性。提出的算法的性能通过客观度量验证。实验结果表明,所提出的策略比最新的语音增强方法实现了更好的语音增强性能。更具体地说,与传统的基于NMF的语音增强方法相比,我们提出的算法可以提高短时客观可理解性(STOI)的5 \%,并改善了语音质量感知评估(PESQ)的0.18。

In this paper, we propose a novel supervised single-channel speech enhancement method combing the the Kullback-Leibler divergence-based non-negative matrix factorization (NMF) and hidden Markov model (NMF-HMM). With the application of HMM, the temporal dynamics information of speech signals can be taken into account. In the training stage, the sum of Poisson, leading to the KL divergence measure, is used as the observation model for each state of HMM. This ensures that a computationally efficient multiplicative update can be used for the parameter update of the proposed model. In the online enhancement stage, we propose a novel minimum mean-square error (MMSE) estimator for the proposed NMF-HMM. This estimator can be implemented using parallel computing, saving the time complexity. The performance of the proposed algorithm is verified by objective measures. The experimental results show that the proposed strategy achieves better speech enhancement performance than state-of-the-art speech enhancement methods. More specifically, compared with the traditional NMF-based speech enhancement methods, our proposed algorithm achieves a 5\% improvement for short-time objective intelligibility (STOI) and 0.18 improvement for perceptual evaluation of speech quality (PESQ).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源